"School Cafeteria Ilsede" / publication in "concrete / high energy efficient buildings", Concrete Marketing Germany by University of Applied Science Bochum, 2009

Inhaltsverzeichnis

Objektübersicht

Schulmensa Ilsede,

Hannover-Ilsede

Energieeffizienz im Hochbau

Teil 1: Wirtschaftshochbau

	Bet⊚n
Energieeffizienz	

im Hochba

Titelfoto: Fildorado Sport- und Freizeitbad Foto: Roland Halbe, artur images

Impressum

Herausgeber: BetonMarketing Deutschland GmbH, Erkrath www.beton.org	
Pedeltian	

Hochschule Bochum, Fachbereich Bauingenieurwesen Prof. Dr.-Ing. Peter Lieblang Dipl.-Ing. (FH) M. Sc. Stephan Eilers

BMD-Projektgruppe Wirtschafts- und öffentlicher Hochbau: Thomas Karcher (Obmann) Gerhard Pahl (Sprecher) Eberhard Bauer Michael Buchmann Michael Buchmann Rainer Büchel Thomas Harbauer Dieter Heller Elisabeth Hierlein Thomas Kaczmarek Dr. Matthias Middel Martin Peck Dr.-Ing. Karsten Rendchen

Gesamtproduktion: Verlag Bau+Technik GmbH, Postfach 12 01 10, 40601 Düsseldorf, 2008 www.verlagbt.de

Einleitung	5
Die Energieeinsparverordnung 2009	6
Raumklima und thermische Behaglichkeit	12
Einflüsse auf das Raumklima	14
Winterlicher Wärmeschutz	14
Sommerlicher Wärmeschutz	14
Lüftung	16
Beton als Speichermasse	17
Raumklimatisierung mit Umweltenergie	20
Thermoaktive Bauteilsysteme	20
Energiequellen und Nutzung	23
Horizontale Erdwärme	23
Energiepfähle und Erdsonden	24
Grundwasser	24
Massivabsorber	25
Zusammenfassung	26


Objektübersicht	27
Teil 1: Energieeffizienz durch spezielle Lösungen mit Beton	28
Hochschulbibliothek der HTW Dresden	28
Verwaltungsgebäude Schwenninger BKK	31
Scholz Edelstahl Logistikhalle	34
Weinlagerhalle Saarwellingen	36
Zollverein School of Management and Design	39
Grundschule Riedberg	42
Sachsendorfer Oberschule Cottbus	45
Schulmensa Ilsede	48
Teil 2: Energieeffizienz durch Maßnahmen verschiedener Art	50
Elefantensiedlung Neu-Ulm	50
Fildorado Sport- und Freizeitbad	52
Kompetenzzentrum Koblenz	54
Solarwatt AG Verwaltungsgebäude	56
Universität Griebnitzsee	58
Quellen- und Bildnachweise	60
Normen / Verordnungen / Richtlinien	61

Teil 1: Energieeffizienz durch spezielle Lösungen mit Beton

S. 48

Scholz Edelstahl Logistikhalle, Essingen

Weinlagerhalle mit

Bürogebäude und

Loungebereich,

Saarwellingen

Villingen Schwenningen

S. 31

S. 34

S. 36

S. 42

Teil 2: Energieeffizienz durch Maßnahmen verschiedener Art

> Elefantensiedlung Neu-Ulm Heizzentrale S. 50

-200

S. 54

S. 56

Zollverein School of Management and Design, Essen

Kompetenzzentrum für Kommunikation, Fertigung und Gestaltung, Koblenz

Grundschule mit Kindertagesstätte und Sporthalle, Frankfurt am Main / Riedberg

Solarwatt AG Verwaltungsgebäude, Dresden

Sachsendorfer Oberschule

S. 58

Schulmensa Ilsede

Bauherr Landkreis Peine Nutzungsart Multifunktionsraum, Mensa, Unterricht NF 947 m ² BRI 8.520 m ³ Regenerative Energien (passive Nutzung) Lüftungsanlage mit Wärmerückgewinnung Baudaten Bauzelt 01/2006 – 12/2007
Bauherr Landkreis Peine Nutzungsart Multifunktionsraum, Mensa, Unterricht NF 947 m ² BRI 8.520 m ³ Regenerative Energieu (passive Nutzung) Lüftungsanlage mit Wärmerückgewinnung Baudaten Bauzeit 01/2006 – 12/2007 Baukosten 3.150.000 Euro netto
Nutzungsart Multifunktionsraum, Mensa, Unterricht NF 947 m² BRI 8,520 m³ Regenerative Energies Augestive Autzung) Lüftungsanlage mit Wärmerückgewinnung Baudaten Bauzeit 01/2006 – 12/2007 Baukosten 3,150.000 Euro netto
Unterricht NF 947 m ² BRI 8.520 m ³ Regenerative Energien (passive Nutzung) Lüftungsanlage mit Wärmerückgewinnung Baudaten Bauzelt 01/2006 – 12/2007 Baukosten 3.150.000 Euro netto
BRI 8.520 m ³ Regenerative Energie (passive Nutzung) Lüftungsanlage mit Wärmerückgewinnung Baudaten Bauzeit 01/2006 – 12/2007 Baukosten 3.150.000 Euro netto
Regenerative Energien Solarenergie (passive Nutzung) Lüftungsanlage mit Wärmerückgewinnung Baudaten Bauzeit 01/2006 – 12/2007 Baukosten 3.150.000 Euro netto
(passive Nutzung) Lüftungsanlage mit Wärmerückgewinnung Baudaten Bauzeit 01/2006 – 12/2007 Baukosten 3.150.000 Euro netto

Innovative bioklimatische Architektur in Deutschland wird Das Gebäude fügt sich hierbei seiner typologischen Bein der Regel von der risikofreudigen Privatwirtschaft voran getrieben, welche sich diese aus Überzeugung leistet. Als Gesellschaft und mit deren Bauten im Ganzen ist man zurückhaltender, geht es doch um Steuergelder und deren sorgfältig vorsichtige Verwendung und dabei stets um begrenzte Erstellungskosten, hinter denen die Beachtung langfristiger Betriebs- und Unterhaltskosten dann im Zweifel zurücksteht

Umso bedeutender sind Bauten, die hier eine Ausnahme machen und erschaffen sind durch eine öffentliche Bauherrenschaft, welche die Not begrenzter Mittel zur Tugend macht und relative Innovation zulässt. Im Fall der Multifunktions-Schulmensa in Ilsede zudem mit einem Projekt mit vorbildhafter Bedeutung, da dieses die heranwachsende Generation behaust und hiermit an deren kommende Herausforderung eines postfossilen Zeitalters didaktisch heranführt. Die Komplettierung des Schulzentrums Ilsede versteht sich als vermittelnder Abschluss-Baustein eines über das letzte Jahrhundert gewachsenen, heterogenen Konglomerats.

schränkung auf passive Maßnahmen und sucht innerhalb dessen Vollendung, wie das Öffnen zum südlichen Park mit Einfangen der südlichen Sonne zur primären thermischen Konditionierung und das Einfangen des Lichtes zur Energiekosten einsparenden Tageslichtoptimierung.

Glas- und Ziegelfüllung

Verschattendes Metall, akustisches Holz und eine thermisch speichernde Betonsohle prägen den Innenraum. Beton in nachhaltiger, da simpler und effizienter Präfabrikationsform und ganzheitlicher Anwendung mit raffiniert thermisch getrennter Fügung hat die zentrale vermittelnde Funktion: er trägt, umhüllt, verschattet, transportiert Licht, speichert thermisch, öffnet und schließt stufenlos Blickbeziehungen und lädt zum Verweilen ein.

Das Konzept eines warmen thermischen Kerns innerhalb einer einfassenden porösen Hülle schafft damit den Rahmen einer maximierten multifunktionalen Nutzbarkeit als Mensa/Klassenraum/Veranstaltungsraum innerhalb der Schule und darüber hinaus für die Gemeinde und die Gesellschaft.

Energiekonzept

Die Heizwärme für die Multifunktions-Schulmensa wird von einer Kraft-Wärme-Kopplungsanlage bereitgestellt. Diese Art der Wärmeerzeugung ist unter Anderem für eine günstige primärenergetische Bewertung des Gebäudes verantwortlich. Zudem werden zur Deckung des Heizwärmebedarfs solare Wärmegewinne genutzt. Die massive Baukonstruktion aus Beton sordt während der Heizperiode für eine ausgeprägte Temperaturstabilität. Die Abwärme aus der Umgebungsluft wird über Rotationswärmetauscher zur Vortemperierung der Frischluft verwendet. In Jahreszeiten mit moderaten Außentemperaturen wird der Einsatz der mechanischen Belüftungsanlage weitestgehend durch eine natürliche Querlüftung in Ost-West-Richtung ersetzt.

Die Gewährleistung eines angenehmen Raumklimas in den Sommermonaten wird im Wesentlichen durch die Wärmespeicherfähigkeit der Betonbauteile sichergestellt. Die typischen Probleme von Versammlungsräumen treten besonders in heißen Jahreszeiten auf, da hier die solaren Wärmeeinträge mit der thermischen Belastung aus der hohen Belegungsdichte im Innenraum zusammenfallen. Die massiven Bauelemente speichern einen Großteil der Wärme und sorgen somit für ein angenehmes Raumklima. Selbst unter voller Ausnutzung stellen sich ohne energieintensive Konditionierung moderate Raumtemperaturen ein, da insbesondere die thermische Trägheit der luftberührten Betonsohle ausgenutzt wird. Durch die 🛛 🔳 Nutzung der thermischen Speichermasse durch eine Phasenverschiebung im Temperaturverlauf infolge der Speicherung wird erst in den Abend- und Nachstunden die Wärme vom Tag freigesetzt und durch eine intensive Belüftung aus dem Gebäude geführt. Zum anderen begrenzen die seitlichen Verschattungen durch die vertikalen Fassadenelemente und der massive Dachüberstand die solaren Wärmeeinträge. Dennoch sorgt der Aufbau der Fassade für eine ausreichende Tageslichtversorgung im Innenraum, sodass hier ein geringer Energieaufwand für Beleuchtungstechnik notwendig ist.

71,8 kWh/(m²⋅a)

Schulmensa Ilsede

Energiequellen- und Techniken

- Solarthermie
- Wärmepumpentechnik
- BHKW (Kraft-Wärme-Kopplung)
- atürliche Querlüftung in Ost-West-Richtung durch Oberlichter in Jahreszeiten mit moderaten Außentemperaturen
- exponierte Bodenplatte aus Beton und intensive Nachtlüftung in den Sommermonaten

